Update (Teil 3): Liquorfluss

Update (Teil 3): Liquorfluss



Torsten Liem

Frühere Untersuchungen zum Liquorfluss wurden durch eine Studie von Yamada [19] relativiert, in der dieser mittels MRT und einer speziellen Methode (Time-SLIP) ohne Injektion von radioaktiven Stoffen oder von Kontrastmitteln die Hydrodynamik des LCS unter physiologischen Bedingungen untersuchte. So konnte festgestellt werden, dass LCS aus dem dritten Ventrikel in die lateralen Ventrikel fließt. In Bezug auf die Absorption des LCS konnten keine Bewegungen oder Pulsationen des LCS beobachtet werden. Die Ergebnisse von Yamada [19] lassen darauf schließen, dass der LCS im Gegensatz zum Blutkreislauf keiner erkennbaren Zirkulation unterliegt und damit nicht, wie in der gängigen medizinischen Literatur beschrieben, vom Produktionsort zur Endstation fließt.

Liquor und Spinalnerv

LCS-Ausströmung bzw. -Ausfluss an lumbalen Nerven wurde per Neuroradiologie dokumentiert. Es erscheint möglich, dass LCS-Signale dazu dienen, mit den Nerven entlang der peripheren LCS-Ausstrombahn zu interagieren. Dies, sollte es belegt werden, könnte klinisch relevant sein, da es eine Erklärung für bislang unbekannte Pathomechanismen in der Schmerzerzeugung liefern könnte. Experimentell festgestellte Berührungsüberempfindlichkeit bei lumbosakralen Schmerzen könnten durch die Freisetzung von Molekülen, Mikropartikeln oder Exosomen durch Mastzellen in den LCS erklärt werden. Diese Moleküle, Mikropartikel oder Exosome bewegen sich im Einklang mit der LCS-Ausströmung entlang der peripheren LCS-Ausstrombahn und interagieren mit Nerven, können sogar einen retrograden Abbau von synaptischen Verbindungen anstoßen [20]. Ein osteopathischer Zugang zur Behandlung der Spinalnerven bzw. der Duralscheiden der Spinalnerven wurde von Liem vorgeschlagen [21].

Abschirmfunktion des LCS gegen innere und äußere elektrische Ladung

Kao [22] stellte im Liquorsystem eine ähnliche Effizienz fest, wie bei einem Faraday-Käfig. Der Faraday-Käfig ist ein Behälter, der mit einem leitfähigen Material bedeckt ist, welches die äußeren statischen und nicht statischen Felder durch eine Kanalisierung der Elektrizität entlang und um das leitfähige Material blockiert, ohne dass Strom durch die Struktur fließt.

 


[1] Bergsneider M. Evolving concepts of cerebrospinal fluid. Neurosurg Clin N Am 2001; 36: 631–638
[2] Johanson CE, Duncan JAr, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fl uid functions: new challenges in health and disease. Cereb Fluid Res 2008; 5:10
[3] Miyajima M, Arai H. Evaluation of the Production and Absorption of Cerebrospinal Fluid. Neurol Medico-chir 2015; 55(8): 647–656
[4] Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fl uid and macromolecules. J Exp Med 2015; 212: 991–999.
[5] Carare RO, Hawkes CA, Jeff rey M, Kalaria RN, Weller RO. Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 2013; 39: 593–611
[6] Johnston M, Zakharov A, Papaiconomou C, et al. Evidence of connections between cerebrospinal fl uid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cereb Fluid Res 2004; 1: 2–15
[7] Cserr HF, Harling-Berg CJ, Knopf PM. Drainage of brain extracellular fl uid into blood and deep cervical lymph and its immunological significance. Brain Pathol 1992; 2: 269–276
[8] Kida S, Pantazis A, Weller RO. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological signifi cance. Neuropathol Appl Neurobiol 1993; 19: 480–488
[9] Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523: 337–341.
[10] Engelhardt B, Carare RO, Bechmann I, et al. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 2016; 132:317–338
[11] Hatterer E, Davoust N, Didier-Bazes et al. How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fl uid to the B-cell follicles of cervical lymph nodes. Blood 2006; 107: 806–812
[12] Hatterer E, Touret M, Belin MF, Honnorat J, Nataf S. Cerebrospinal fl uid dendritic cells infi ltrate the brain parenchyma and target the cervical lymph nodes under neuroinfl ammatory conditions. PLoS One 2008; 3: e3321
[13] Goldmann J, Kwidzinski E, Brandt C, et al. T cells traffi c from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol 2006; 80: 797–801
[14] Kaminski M, Bechmann I, Pohland M et al. Migration of monocytes aft er intracerebral injection at entorhinal cortex lesion site. J Leukoc Biol 2012; 92: 31–39
[15] Oehmichen M, Gruninger H, Wietholter H, Gencic M. Lymphatic effl ux of intracerebrally injected cells. Acta Neuropathol 1979; 45: 61–65
[16] Kiviniemi V, Wang X, Korhonen V, Keinanen T, Tuovinen T, Autio J, LeVan P, Keilholz S, Zang YF, Hennig J, Nedergaard M. Ultra-fast magnetic resonance encephalography of physiological brain activity – Glymphatic pulsation mechanisms? J Cereb Blood Flow Metab 2016; 36 (6): 1033–1045
[17] Liem T. Kraniosakrale Osteopathie. Die Traube-Hering-Mayer-Oszillation und der kraniale rhythmische Impuls (CRI) nach Nelson, Glonek, Sergueff . Stuttgart: Haug 2010
[18] Nelson KE, Sergueef N, Glonek T. Recording the rate of the cranial rhythmic impulse. J Am Osteopath Assoc 2006; 106 (6): 337–341
[19] Yamada S. Cerebrospinal fl uid physiology: visualization of cerebrospinal fl uid dynamics using the magnetic resonance imaging Time-Spatial Inversion Pulse method. Croat Med J 2014; 55 (4): 337–346
[20] Bechter K, Schmitz B. Cerebrospinal fluid outflow along lumbar nerves and possible relevance for pain research: case report and review. Croat Med J 2014; 55 (4): 399–404
[21] Liem T Osteopathic Treatment of the Dura. In: Liem T, Tozzi P, Chila A. Fascia in the Osteopathic Field. Handspring, Edinburgh, 2017: 539- 550
[22] Kao CC. Letter to the editor: A proposed new function of the cerebrospinal fl uid. Clinical Anatomy 2015; doi: 10.1002/ca.22578
[23] Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science 2013; 342(6156): 373–377
[24] Liem T, Moser M. Biologische Rhythmen und ihre Bedeutung für die Osteopathie. Osteop Med 2016; 17(1): 22–26
[25] Herculano-Houzel S. Sleep it out. Science 2013; 342: 316f
[26] Hui FK. Clearing your mind: a glymphatic system? World Neurosurg 2015; 83 (5): 715–723
[27] Iliff JJ, Wang M, Lia Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Med 2012; 4 (147): 147ra111
[28] Levy D, Kainz V, Burstein R, Strassman AM. Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity. Brain Behav Immun 2012; 26: 311–317
[29] Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K. Understanding wiring and volume transmission. Brain Res Rev 2010; 64: 137–159
[30] Fuxe K, Borroto-Escuela DO, Tarakanov A, Romero-Fernandez W, Manger P, Rivera A et al. Understanding the balance and integration of volume and synaptic transmission. Relevance for psychiatry. Neurol Psychiat Brain Res 2013; 19: 141–158
[31] Abbott NJ. Evidence for bulk fl ow of brain interstitial fl uid: signifi cance for physiology and pathology. Neurochem Int 2004; 45: 545–552
[32] Abbott NJ. Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013; 36: 437–449
[33] Carare RO, Bernardes-Silva M, Newman TA, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: signifi cance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 2008; 34: 131–144
[34] Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO. Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 2011; 121: 431–443
[35] Hawkes CA, Gentleman SM, Nicoll JA, Carare RO. Prenatal high-fat diet alters the cerebrovasculature and clearance of beta-amyloid in adult off spring. J Pathol 2015; 235: 619–631
[36] Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO. Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Th eor Biol 2006; 238: 962–974
[37] Sharp MK, Diem AK, Weller RO, Carare RO. Peristalsis with oscillating fl ow resistance: a mechanism for periarterial clearance of amyloid beta from the brain. Ann Biomed Eng. 2016; 44(5): 1553–65
[38] Weller RO, Hawkes CA, Carare RO, Hardy J. Does the diff erence between PART and Alzheimer’s disease lie in the age-related changes in cerebral arteries that trigger the accumulation of Abeta and propagation of tau? Acta Neuropathol 2015; 129: 763–766
[39] Hughes TM, Craft S, Lopez OL. Review of the potential role of arterial stiff ness in the pathogenesis of Alzheimer’s disease. Neurodegener Dis Manag 2015; 5: 121–135
[40] Arbel-Ornath M, Hudry E, Eikermann-Haerter K et al. Interstitial fl uid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models. Acta Neuropathol 2013; 126: 353–364

Copyright 2024 by OSD Deutschland GmbH

Aus Gründen der leichteren Lesbarkeit, verwenden wir auf unserer Webseite ausschließlich das generische Maskulinum. Es bezieht sich auf Personen jedweden Geschlechts.

Kontakt zur OSD

OSD Kontakt PopUp