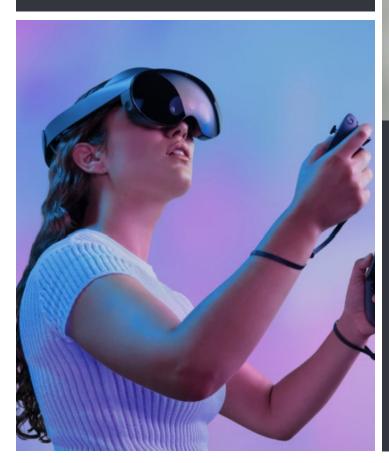
Virtual Reality for analgesia and rehabilitation

Phil Austin


Perception of being physically present

Elements of VR that increase immersiveness

- Simulated 3D environment using computer technology
- Continuity of surroundings
- Compliant with human vision
- Freedom of movement
- Physical interaction
- Physical feedback

Hardware

- Immersive headmounted devices
- 3D-enabled glasses
- Auditory inputs
- Noise-cancelling
- Head/body tracking
- Data gloves / joysticks

Clinical applications

Pain

Rehabilitation

Mood/stress management

PTSD/phobias

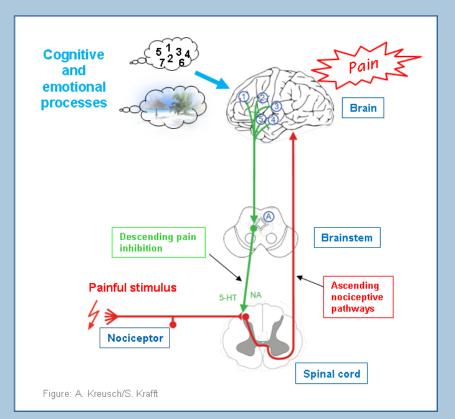
Palliative care

Patient education

Clinical/surgical training

Short-term Distractive effects

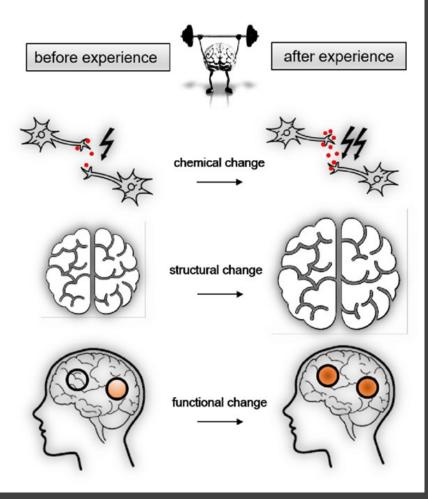

Advanced form of imagery in inducing experiences and emotions


Short-term diversion of attention away from pain \rightarrow alternative stimulus

Temporary alterations in excitability of neurons in pain modulatory brain regions

Austin PD. The Analgesic Effects of Virtual Reality for People with Chronic Pain: A Scoping Review. Pain Med. 2022 Jan 3;23(1):105-121

Virtual Reality Impact on Pain

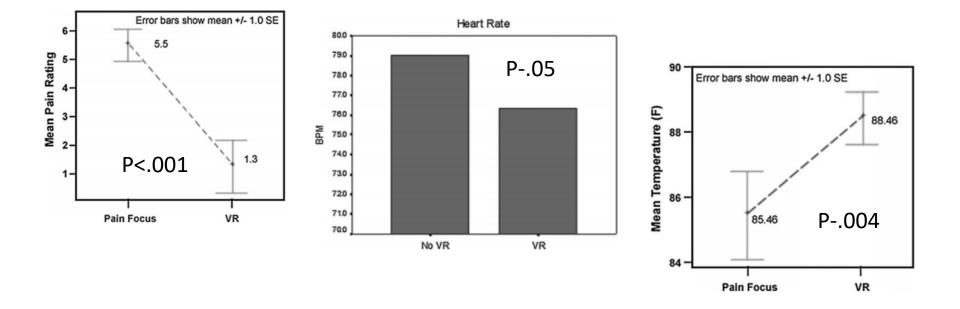

Long-term neuroplastic effects

The brain's ability to reorganize and adapt by forming new neural connections over time

 $\ensuremath{\uparrow}$ repeated stimulation of neurons in the CNS

- **Sprouting** new axon and dendrite extension
- **Rerouting** new connections made between active neurons
- Long-term potentiation strengthening of synaptic activity (pain inhibitory pathways)
- Long-term depression weakening of synaptic activity (pain facilitatory pathways)

Basic neuroplasticity types



<u>Cyberpsychol Behav Soc Netw</u>. 2014 Jun 1; 17(6): 346–352. doi: <u>10.1089/cyber.2014.0207</u> PMCID: PMC4043365 PMID: 24892196

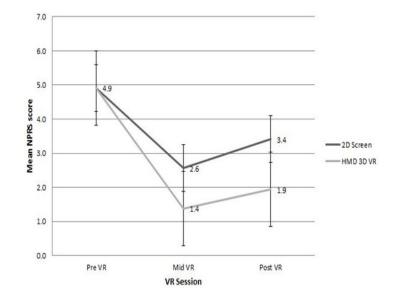
Virtual Reality as a Distraction Technique in Chronic Pain Patients

Brenda K. Wiederhold, PhD, MBA, BCB, BCN,^{II} Kenneth Gao, BS,² Camelia Sulea, MD,¹ and Mark D. Wiederhold, MD, PhD, FACP²

15 minute VR exposure session (N=40)

ARTICLE

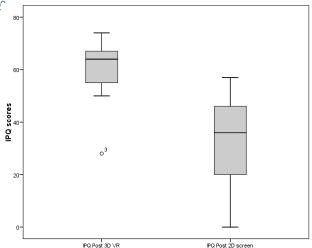
ı.


The short-term effects of head-mounted virtual-reality on neuropathic pain intensity in people with spinal cord injury pain: a randomised cross-over pilot study

Philip D. Austin¹ • Ashley Craig² • James W. Middleton² • Yvonne Tran³ • Daniel S. J. Costa^{4,5,6,7,8} • Paul J. Wrigley^{4,5,8,9} • Philip J. Siddall^{1,6}

Neuropathic pain – at and below level of lesion

Parameter	Mean 95% Cl (covariate-adjusted)	Significance							
Effect of VR conditions on post VR reported pain intensity									
3D HMD VR vs 2D screen application	1.50	<.0001*							
 Sequence (between subject) 	0.90	0.34							
Time (within subject)	0.00	1.00							
Effect of VR conditions on post VR reported levels of pr	esence								
3D HMD VR vs 2D screen application	16.57	.0001*							
 Sequence (between subject) 	4.87	0.28							
Time (within subject)	0.27	0.93							
Effect of reported levels of presence on post VR reported intensity	ed pain								
IPQ score	0.06	.004*							
Sequence (between subject)	0.62	0.48							
Time	-0.15	0.68							


Supportive Care in Cancer Supportive Care in Care in Care Supportive Care in Care in Care Supportive Care in Care in Care in Care in Care Supportive Care in Ca

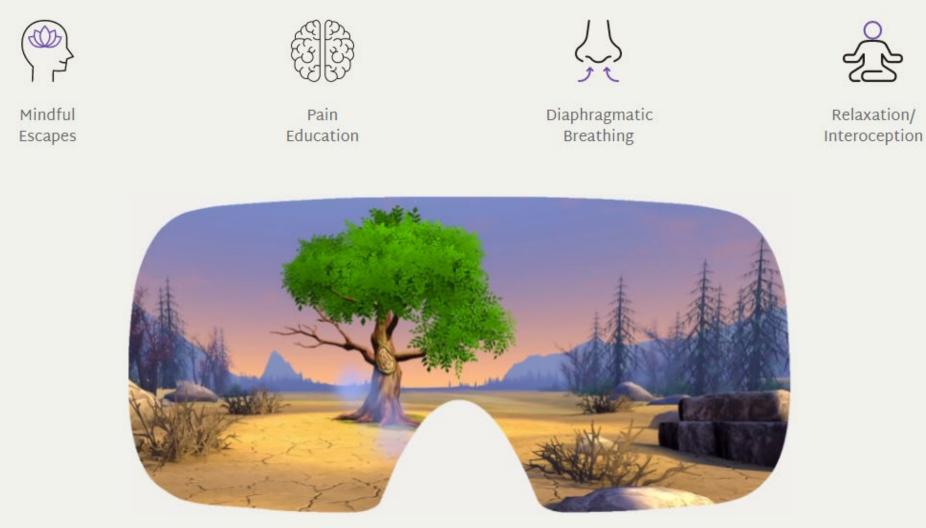
<u>Support Care Cancer.</u> 2022; 30(5): 3995–4005. Published online 2022 Jan 21. doi: <u>10.1007/s00520-022-06824-x</u>

Feasibility and acceptability of virtual reality for cancer pain in people receiving palliative care: a randomised cross-over study

Philip D. Austin,^{II1} Philip J. Siddall,^{2,3} and Melanie R. Lovell^{1,3}

PMCID: PMC8782583

Mean (SD)			3D Head mounted VR			2D computer screen				
	Baseline	During and post-treatment	Mean (SD)	Mean diff (SD)	95% CI of difference	P-value	Mean (SD)	Mean diff (SD)	95% CI of difference	P-value
Cancer pain intensity	3.6 (1.4)	Average pain during	1.6 (1.6)	2.0 (1.7)	.98-3.1	.001	1.9 (1.7)	1.7 (1.4)	.87-2.5	.001
		Least pain during	.9 (1.5)	2.7 (1.8)	1.6-3.8	.0002	1.2 (1.8)	2.5 (1.6)	1.5-3.4	.0001
		Immediately post	1.8 (1.5)	1.9 (1.8)	2.9-3.8	.003	2.2 (1.8)	1.5 (1.6)	2.4-3.3	.007
		5 min post	2.3 (1.5)	1.3 (1.8)	.19–2.4	.025	1.9 (1.9)	1.8 (1.9)	2.3-3.3	.005
		10 min post	2.5 (1.7)	1.2 (2.2)	17-2.5	.082	2.1 (1.7)	1.5 (1.3)	.74-2.3	.001
		20 min post	2.2 (1.8)	1.4 (1.7)	.38-2.4	.011	2.4 (1.8)	1.2 (1.4)	.37-2.1	.009
Tiredness	6.1 (2.3)		2.2 (2.8)	3.8 (3.9)	1.5-6.1	.004	3.2 (3.1)	2.8 (3.9)	.47-5.2	.023
Drowsiness	5.4 (2.8)		1.5 (2.2)	3.9 (3.3)	1.9-5.9	.001	2.8 (2.9)	2.6 (3.8)	.35-4.9	.027
Nausea	1.5 (2.5)	(1.9 (2.9)	39 (3.3)	-2.1-1.4	.64	1.0 (2.2)	0.5 (1.8)	55-1.6	.30
Lack of appetite	4.4 (3.9)		4.9 (4.2)	53 (1.2)	-1.323	.15	4.2 (4.1)	0.2 (2.0)	-1.1-1.4.	.79
Shortness of breath	2.8 (2.4)		.77 (1.1)	2.0 (2.3)	.63-3.4	.008	1.1 (2.0)	1.7 (1.7)	.66–2.7	.004
Depression	2.2 (2.7)		0 (0.0)	2.2 (2.7)	.52-3.8	.014	0.2 (0.4)	.19 (2.6)	.35-3.5	.02
Anxiety	1.9 (2.5)		0.2 (0.6)	1.8 (2.6)	.23-3.3	.028	0.4 (0.7)	1.5 (2.1)	.27-2.8	.02
Wellbeing	3.4 (1.9)		1.2 (1.8)	2.2 (2.5)	.66–3.7	.009	1.8 (1.6)	1.6 (2.1)	.34-2.9	.02

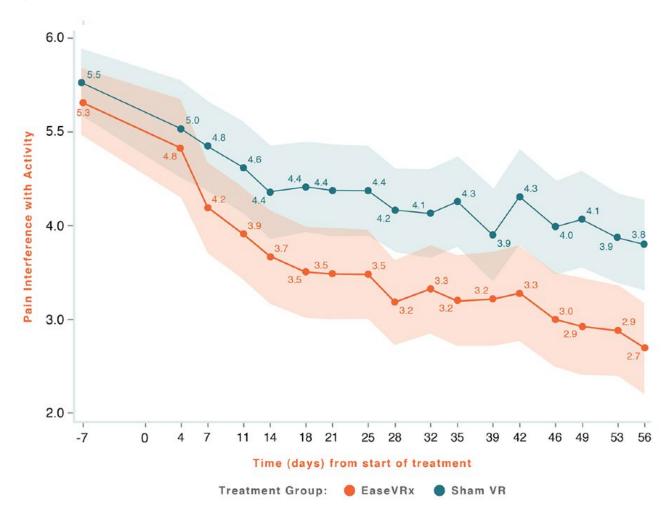

n people receiving

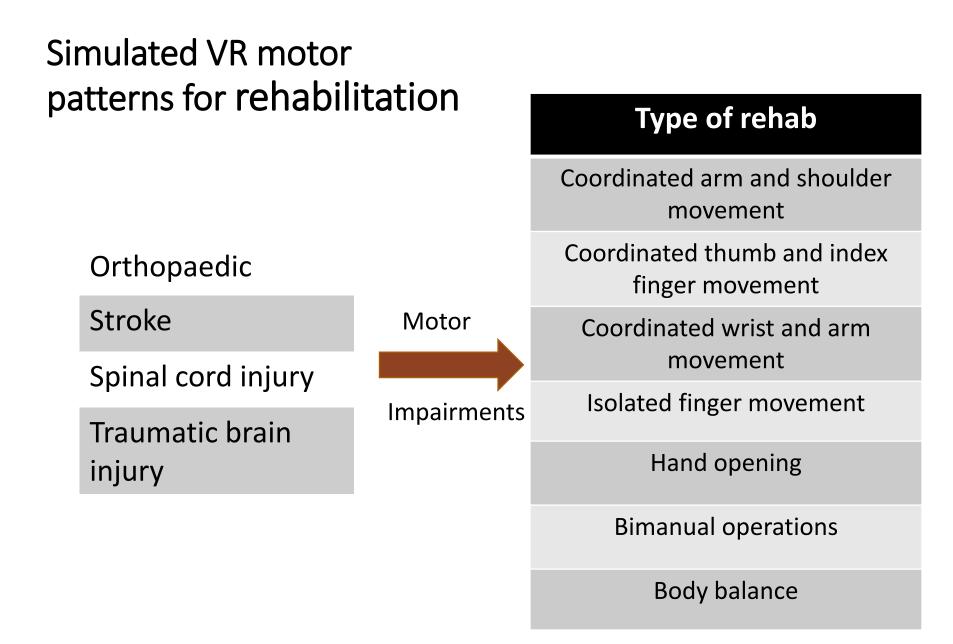
▶ springer.com

PMID: <u>3506433</u>

The RelieVRx Program

RelieVRx engages pain centers through various ways:


(.....


Dynamic breathing

An 8-Week Self-Administered At-Home Behavioral Skills-Based Virtual Reality Program for Chronic Low Back Pain: double-Blind, Randomized, Placebo-Controlled Trial Conducted During COVID-19

Garcia LM, Birckhead BJ, Krishnamurthy P, Sackman J, Mackey IG, Louis RG, Salmasi V, Maddox T, Darnall BD Journal of medical Internet research, 2021, 23(2), e26292 | added to CENTRAL: 31 March 2021 | 2021 Issue 3 https://doi.org/10.2196/26292 🗗

Sourced from: PubMed | Links: PubMed C, PubMed Central C, ClinicalTrials.gov C

Coordinated arm, wrist and leg movements

Life task simulations

- Reaching
- Catching
- Pinch/squeeze
- Balance

Feng H, Li C, Liu J, Wang L, Ma J, Li G, Gan L, Shang X, Wu Z. Virtual Reality Rehabilitation Versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson's Disease Patients: A Randomized Controlled Trial. Med Sci Monit. 2019 Jun 5;25:4186-4192

Tokgöz P, Stampa S, Wähnert D, Vordemvenne T, Dockweiler C. Virtual Reality in the Rehabilitation of Patients with Injuries and Diseases of Upper Extremities. Healthcare (Basel). 2022 Jun 16;10(6):1124

Coordinated wrist and hand movement

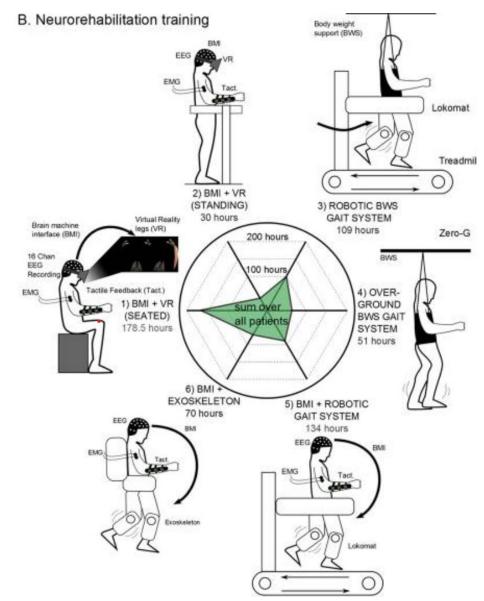
Pinching / Squeezing

Twisting / Supination

MICIOSOIT KINECT 3D Hal...

Watch later

Share


OT VR innovations

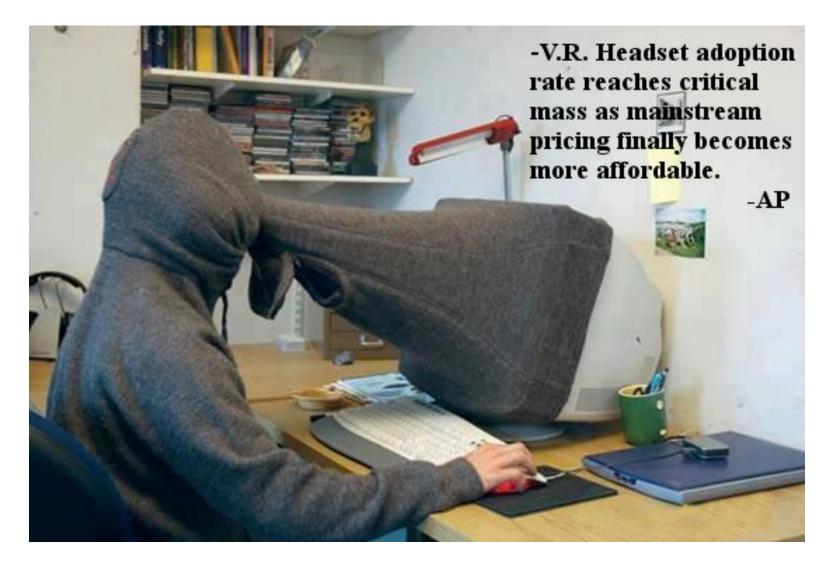
Hwang NK, Shim SH. Use of Virtual Reality Technology to Support the Home Modification Process: A Scoping Review. Int J Environ Res Public Health. 2021 Oct 21;18(21):11096

Atwal A, Money A, Harvey M Occupational Therapists' Views on Using a Virtual Reality Interior Design Application Within the Pre-Discharge Home Visit Process J Med Internet Res 2014;16(12):e283

Long-term gain in analgesia and motor control

- 12 months training
 - using zero G treadmill, VR walking, Exoskeleton
- Improvements below lesion
 - Crude/fine touch
 - Proprioception
 - Voluntary motor control
- 50% participants upgraded from complete to incomplete paraplegia

Donati AR, et al. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Sci Rep. 2016 Aug 11;6:30383



The future: (HCI) "The avatar will see you now"

- VR
 - Full immersion, multi-sensory experience
- Artificial intelligence (AI)
 - Personalisation of VR experience
 - Creation of own visual/audio environments (e.g., beach, forest, childhood home)
- AI Chatbots
 - Provides real-time, intellectual communication between system and user
 - Emotional support in specialised care settings (Palliative services)

Pauw, L. S., et al. (2022). "The avatar will see you now: Support from a virtual human provides socio-emotional benefits." <u>Computers in Human Behavior **136: 107368.**</u>

Thank you

